
Identification and Estimation of Flight Software Cost Risk Growth

Jairus M. Hihn, Ph.D.
Hamid Habib-agahi, Ph.D.

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, Ca. 91 109

1.0 INTRODUCTION

The Jet Propulsion Laboratory (JPL) in Pasadena, California is a US Government Federally-Funded
Research and Development Center that is run by the California Institute of Technology for the National
Aeronautics and Space Administration (NASA)’ PL’s primary role is to conduct unmanned, robotic
space exploration missions throughout our solar system. JPL has a long record of successful deep space
missions from Explorer to Voyager, to Mars Pathfinder. Our experience and success as with the rest of
the aerospace industry is built upon our hardware and system level expertise. The majority of JPL’s, as
well as other aerospace organizations, current managers and system engineers have made their
reputations on these hardware intensive spacecraft. Only recently has software become more important
in its contribution to spacecraft risk, integration and labor cost, therefor more emphasis on software
development management and planning is required. This paper reports the results of a study funded by
JPL’s Develop New Products (DNP) reengineering project. The study objectives were to;

0 Identify the high level sources of the unexpected software development cost growth and

Incorporate the study results into a high level parametric software cost model.
quantify their impact,

2.0 BACKGROUND

JPL, along with the rest of NASA and industry, is actively engaging the “faster, better, cheaper”
philosophy. The first “faster, better, cheaper” mission was Mars Pathfinder. It was 70% less than the
average cost of JPL’s major space missions from 1964 to 1994. In addition, the frequency of missions
launched has dramatically increased, from the historical rate of about one mission every two years to
multiple missions launched every year. This shift has required major changes in the way JPL does
business and is creating some institutional strain as the organization finds ways to adapt.

In response, JPL is undergoing a radical redefining of its development processes to provide future
missions the means to achieve the goals of “faster, better, cheaper”. The focus of these activities until
very recently has been primarily on improving the development process and tools for hardware
employing concurrent engineering and information technology. Also underway is what appears to be a
very successful shift towards incorporating off the shelf hardware for many mission components.
However, during this same time of seeking new ways of doing business, spacecraft have become more
software intensive. This paper addresses the causes of flight software cost growth and quantifies their

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under
a contract with the National Aeronautics and Space Administration.

impact. The results can be used to help managers identify and estimate the main cost risk drivers, which
can be used to determine what changes to make in order to reduce the overall cost and to develop a more
accurate software cost estimate.

3.0 METHODOLOGY

3.1 Sample Definition

In order to limit study cost and time, it was decided not to make an exhaustive or stratified survey of
all flight software under JPL management.

Missions were included in the study based on the following criteria:
0 Cost growth had to exceed 20% of plan at PDR in the last 3 years, except one mission had to be

At least one ground support software development task had to be included
A mixture of in-house and subcontracted missions had to be included.
Participants were chosen based on having worked extensively on the selected missions

included that stayed within its budget

3.2 Data Collection Methodology

The data collection methodology was relatively complex consisting of multiple steps:
1) Unstructured Interview based on Protocol Analysis to obtain self reports of what happened on

2) Follow up Structured Interview to verify how self reports had been categorized and to identify
specific missions

missing information

3.3 Interviews

The two interview sessions consisted of approximately 60-90 minutes each. The interviews primarily
focused on a single selected mission. Two to three persons conducted both interviews. One interviewer
functioned as the main scribe and interviewer, the others as backup to reduce the likelihood that
information was lost or a potentially important point was missed. The approach used is a modification of
the Protocol Analysis methodology proposed by Simon and Ericson2. It translates self-reports into
ordinal data by grouping descriptive information into categories.

The first interview was relatively unstructured and consisted of only four basic questions. The open
ended interview questions were designed to elicit information concerning what was working and not
working within the selected missiodproject. Detailed notes were taken from each interview, which were
transcribed and used as the information source from which data could be derived. The interviewees
typically responded to the questions by describing specific events or behaviors that supported their
response and illustrated their issues or concerns.

The questions for the first interview consisted of:
(1) Identify missiodproject, mission objectives, role
(2) Describe the main causes of the software development cost growth experienced on your

(3) Identify the top three software development cost risks based on your experience
(4) Describe what you will do differently, to reduce the software development cost risks you

project

identified

Simon, H. and Ericson, K., Protocol Analysis; Verbal Reports as Data, MIT Press, 1993

2

After the interviews were completed and transcribed, the responses were reviewed and systematically
grouped into common themes, which resulted in the identification of 7 major cost growth risk areas or
categories. After developing a first draft set of causes and potential recommendations, a second
interview with the same group was initiated in order to review how their information had been mapped
into the identified cost growth categories. The respondents could modify the information, add new
information, delete information and even add new categories. In addition, the participants were asked to
provide a subjective estimate of the overall cost growth as a percentage of the budgetlplan at the time of
the Preliminary Design Review (PDR) and the percentage contribution of each cost growth category.
The tables were updated based on the information provided by the participants. The analysis was
performed based on this information. An example of a cost risk table from an actual interview is
displayed in Figure 1.

Risk Area
contribution to

Percentage

cost growth
Experience &
Teaming

10%

50% Planning, Estimation
& Control

Requirements &
Design

10%

Testing

planning
Tools & Methods 10%
Staffing 1 5%
TOTAL Cost
Growth I 50%

Fi

Participant Statements Grouped by Risk Area

0 System engineers had extensive HW experience but had limited SW

0 Managers were HW oriented and had limited understanding of SW
0 Software development cost was underestimated because (1) had

experience

assumed too much inheritance and (2) had underscoped effort partly
because had not accounted for code growth.

requirements and also had no process to feed back information as
learned more about SW requirements.

0 Did not have sufficient traceability between system and SW

Not enough testbeds
0 Simulators were not ready until late in lifecycle, which delayed

0 Testbeds functional capability were limited
0 Assumed software inheritance of 30% from a previous mission but

0 Missed some test results because analysis tool lacked capability
0 Persistently under staffed.

Project completed with 50% cost growth in flight software

testing

ended up inheriting less than 5%.

development costs

gure 1: Example Cost Risk Table

3

4.0 DATA SUMMARY

A total of 11 managers and engineers provided information for this study. They held a variety of
positions from Technical (Cognizant Engineer) to Project Manager. The breakdown is displayed in
Figure 2. Seven of the participants had extensive software experience and 6 had limited experience.

Position No. of Participants
Project Manager 3
Spacecraft Manager

3 Technical Manager
3

Figure 2: Distribution of Participant Positions

The study included software from 8 missions out of 24 that are currently either in development or
operations. An overview of the missions included in the study and their basic characteristics is presented
in Figure 3. There are six flight and two ground systems with some having completed implementation
and some still under development; three were subcontracted; and only one of the missions included in the
study has not exhibited any cost growth.

Mission 7
1 Yes Implementation In-house Ground Mission 8
1- No Implementation In-house Ground

Figure 3: Summary of Mission Characteristics

I SW Cost Growth' I
(Percent of SW Budget)

Mean
25%-71% 51%
Adj Range

Figure 4: Software Cost Growth Summary

A summary of the cost growth of the missions included in the study is provided in Figure 4. This
excludes the missions with lowest and highest observed cost growth. Three of these were based on actual
data and four were based on a combination of recollection and data. This shows that the average cost
increase for projects that experience cost growth, is approximately 50% with a range of 25% to 75%. Of
course, one should not conclude that all flight software developments would exceed their PDR plan by
50% based on the results of this study. The sample size is small and the flight software tasks were

+ Summary excludes the highest and lowest observations. The mean with all observations is 54%.

4

preselected based on the condition that they had more than 20% cost growth over the plan at PDR. How
to actually interpret the data will be discussed in the next section.

5.0 RISK IDENTIFICATION AND QUANTIFICATION

5.1 High Level Risk Identification and Quantification

Based on a categorical analysis of the data a number of key risk areas were identified. These areas
are: Experience & Teaming, Planning, Requirements and Design, Testing, Software Inheritance, Staffing,
and Tools & Methods. Figure 6 provides a summary of the percentage of missions reporting issues
associated with each risk area.

As Figure 5 shows, no single risk area was reported by all missions. However, most of the missions
did report cost growth arising from 5 out of the 7 risk areas. The most frequently identified risk area was
Tools & Methods, which came up in 86% of the missions. Several missions reported a lack of test
analysis tools that in one case caused an important anomaly, which was not resolved until just before
launch. There are also instances where COTS tools were purchased and never used because they turned
out to be inadequate. In one case the cost of a COTS tool, which was not used, was equivalent to 5% of
the total cost growth.

Risk Area

Experience &
Teaming

Percentage of
Missions Reporting
Responses in Risk

Area
71%

Planning
71%

Requirements
& Design

Testing 71%
57%

Software
Inheritance
Tools & 86%
Methods

Staffing
71%

Summary of Reported Issues

0 Management and system engineers had insufficient software

0 Weak teaming between hardware, software and systems teams
SW engineers lacked system and mission experience
Planning and estimation practices
Planned inheritance never happened
Insufficient reserves for SW

0 Lack of good system architecture and system partitioning
Lack of good software architecture
Systems decisions made without accounting for impact on software
SW requirements solidify late in the life cycle and are very volatile
Testbeds; too few, too late, not validated, insufficient capability

0 Inherited code did not behave as advertised and required more

experience

modification than expected. (5 of 8 missions attempted to inherit software.
Of these. 4 re~orted maior Droblems.)

0 Key test results were missed because analysis tool lacked capability
Purchased COTS tools that were not used.

0 High turnover in software staff
0 SW team was not included in early stages of planning
0 Integration and SW teams were not available to support ATLO

~ ~~~~

Figure 5: Reported Risk Area Frequency with Summary Details
(Based on missions reporting cost growth)

5

The next most frequently identified risk areas related to Planning, Experience & Teaming, Testing
and Staffing categories. Over 70% of the missions planning problems were related to incorrect software
assumptions, especially optimistic assumptions with respect to inheriting software from other missions
and projects. This is further exacerbated by the impact of traditionally starting software late in the
mission development process. Three of the participants discussed the concern that there is fundamentally
greater uncertainty associated with software development than with hardware. The lack of sufficient
software development knowledge in the project office, and a lack of systems and mission perspective on
the part of software engineers magnify the inherent development risks. Also the lack of communication
between hardware and software teams and, in many cases system decisions being made without
considering the impact on software, has led to increased software development costs. The problems cited
in Testing were: (1) not having access to multiple testbeds and simulators early enough; and (2) the lack
of available staff from system integration and software development teams to support the functional
testing and ATLO team (Assembly, Test, Launch, Operations).

Missions reported cost growth due to problems with Requirements & Design 57% of the time. There
were a number of issues, many of which were process related, that arose in how system architecture was
developed. A key problem was the lack of a well defined system architecture supported by a software
architecture, which is required to provide the structure needed as the mission and system evolve over the
life cycle.

The frequency of occurrence of a risk area is not the same as its actual impact, therefore, estimates of
each risk areas contribution to cost growth were also obtained from the participants and are summarized
below in Figure 6. The data provided is based on the participants’ best judgment. The mean values were
computed by assuming that ranges represented a uniform distribution which were combined using Monte
Carlo techniques to compute the mean of the overall distribution. Note that software inheritance was
combined with planning as several of the respondents felt it was not possible to separate it from the
planning problems that arose on their mission.

Figure 6: Risk Impacts

Based on the missions in the study, there is an indication that the two highest risk areas relate to
Planning and Requirements & Design, which accounted for 60% of the observed average cost growth.
The next highest risk area was Testing which reflects the impact of not having sufficient testbeds and
simulators and/or their being delivered too late. Note that even though Tools & Methods issues arose
with high frequency, the estimated impact on cost growth was very small.

The results only change slightly when combining risk frequency and estimated impact. Planning
problems are clearly the largest source of expected cost growth for flight software. Requirements &
Design and Testing are about equal in expected cost growth impact. This study would indicate that these
three areas are the ones that managers need to address carefully in the early stages of the mission
lifecycle in order to reduce the likelihood of software development cost growth.

6

6.0 SOFTWARE COST RISK MODEL

At this point there is not sufficient data to formally estimate model parameters. However, if we
assume a typical log linear model similar to the original COCOM03 form, e.g.

Effort = a * S L O C P n CDi

Where SLOC = source lines of code
I

CDi = i cost driver

i = l,n

j= l,m

th

Based on the subjective estimates provided by the participants it is possible to heuristically propose some
potential weighting factors for the set of risk drivers.

Figure 7 presents our proposed risk driver weights for a risk model of the form:

RDj = j risk driver.

a$ are technical coefficients

i = l,n

j= 1,m

th

Risk Driver Cost Risk Driver Weights
Nominal Extra High Very High High

Experience &
Teaming

1.08 1.05 1.02 1

1.25 1.17 1.10 1 Planning
Requirements & 1 1.05 1.13 1.20

Staffing

132% 60% 30% 0% Maximum Expected
1.10 1.03 1.02 1 Tools
1.15 1.08 1.05 1 Testing
1.13 1.05 1.02 1

Figure 7: Proposed Risk Driver Weights

The risk driver weights were derived using 50% of the low, mean and high values from the estimated
risk impacts (see Figure 6). The lows were rounded down and the extra highs were rounded up. The
50% is based on the average cost growth of the mission included in the study (see Figure 4). These
weights are based on the JPL environment over the past 3 years. The appropriate values will likely

Boehm, B., Software Engineering Economics, Prentice Hall, 1988

7

change as JPL changes its software development process and methods; they are also different for
different organizations. The last row, labeled Maximum Expected Cost Threat, shows the net impact of
all the risk drivers; High, Very High, or Extra High, respectively.

A set of risk driver descriptions is provided in Figure 8. The descriptions are derived from the
information provided in the interviews. What is described in Figure 8 are the end points of the scale,
which are indicated as Nominal and Extra High. If the appropriate rating falls between the end points,
i.e. High or Very High, then the ratings need to be subjectively evaluated as to the conditions that
describe the task being evaluated.

A cost growth multiplier can be computed using the following steps.
1. Use Figure 8 to subjectively determine the rating of each risk driver, depending on its relative

importance and variation between Nominal and Extra High
2. Use Figure 7 to determine the risk driver weight, RDj, associated with each risk driver rating.

3. Derive the cost growth multiplier, n RDj , by multiplying the risk driver weights.
i

The cost growth multiplier is an indicator of the cost risk that a software development project is
likely to experience. The cost growth multiplier can be used to indicate the size of the reserve that should
be held or to suggest by how much to increase the software budget. It can also be used to help managers
identify the main risk drivers for their project and to determine what changes to make in order to reduce
the overall cost risk and required reserves. These current values are based on a small sample. While
derived in a reproducible manner, they are only suggestive of the likely values and a more extensive
study based on actual project data needs to be performed.

8

Risk Driver

Experience
& Teaming

Planning

Require-
ments &
Design

Staffing

Testing

Tools

Software Cost R
Nominal (Reduces Risk)

Extensive software experience in the
project office
Software staff included in early
planning and design decisions
Integrated HW and SW teams

0 Appropriately detailed and reviewed

0 All key parties provide input with time

0 Appropriate assignment of reserves
0 SW inheritance verified based on

review and adequate support

Plan

to get buy-in

0 Solid system and SW architecture with
clear rules for system partitioning

0 Integrated systems decisions based on
both HW and SW criteria

0 SW Development process designed to
allow for evolving requirements

Expected turnover is low
0 Bring software staff on in timely fashion

Plan to keep software team in place
through launch
Multiple Testbeds identified as planned
deliverables and scheduled for early
completion.
Separate test team
Early development of test plan

0 CM and Test tools appropriate to task

Proven design tools
needs

c Driver Ratings
Extra High (Increases Risk)

0 Limited software experience in the
project office

0 Software staff not included in early
planning and design decisions

0 HW and SW teams are not integrated
0 Lack of appropriate planning detail with

0 Not all parties involved in plan

0 Simplistic approach to reserve

0 Optimistic non-verified assumptions

insufficient review

development

allocation

especially with respect to software
inheritance

0 System and Software architecture not in
place early with unclear descriptions of
basis for HW & SW partitioning of
functionality.
Systems decisions made without
accounting for impact on software

0 Expect SW requirements to solidify late
in the life cycle
Expected turnover is high
Staff up software late in life cycle

0 Plan to release software team before

0 Insufficient Testbeds/simulators
dedicated to SW and are not clearly
identified as project deliverables

0 Plan to convert SW developers into test
team late in lifecycle

0 Test documents not due till very late in
the life cycle

0 No or limited capability CM and test
analysis tools

0 Unproven design tools selected with
limited time for analysis

ATLO

Figure 8: Cost Risk Driver Ratings

9

7.0 CONCLUSIONS

A number of JPL managed missions have experienced cost growth with respect to the flight software
portion of the mission. This has occurred for both in-house and subcontracted missions. The results from
this study indicate that the sources of flight software cost growth can be categorized into a small number
of basic risk areas with three accounting for 75% of the cost growth, Planning, Requirements & Design,
and Testing. Two other key risk areas relate to Software Inheritance and Experience & Teaming. The
study results also indicate that given the current software development environment and approach, that
software development reserves greater than 30% are likely to be required. In addition, a basic template
for a software cost risk model has been proposed with estimates for the mean impact of the risk drivers,
based on the use of a methodology for obtaining subjective cost growth estimates when quantitative data
is not available

The next step is to obtain quantitative data from both completed and on-going missions to provide
better mission and software development information and metrics. This data can then be used to develop
more detailed cost estimation models, guide managers in better planning and control practices, and also
support the development improved software development process.

Acknowledgements

This work would not have been possible without the valuable assistance and close cooperation of the
JPL Flight Software Cost Risk Study Team, Dave Eisenman, Dan Erickson, Rick Grammier, Chris Jones,
John Lai, Rob Manning, Phil Morton, Dave Nichols, Moshe Pniel, Glenn Reeves, Larry Simmons,
Fernando Tolivar and also The Center for Space Missions Information and Software Systems (CSMISS)
contributors; Frank Kuykendal, Tom Fouser, Milt Lavin, and Charles Beswick. Special thanks to Dave
Eisenman, Chris Jones, Moshe Pniel, Charles (Jeff) Leising, Dan Erickson, Randy Taylor and Richard
O’Toole for their comprehensive review.

10

